Computationally Efficient Composite Likelihood Statistics for Demographic Inference.

نویسندگان

  • Alec J Coffman
  • Ping Hsun Hsieh
  • Simon Gravel
  • Ryan N Gutenkunst
چکیده

Many population genetics tools employ composite likelihoods, because fully modeling genomic linkage is challenging. But traditional approaches to estimating parameter uncertainties and performing model selection require full likelihoods, so these tools have relied on computationally expensive maximum-likelihood estimation (MLE) on bootstrapped data. Here, we demonstrate that statistical theory can be applied to adjust composite likelihoods and perform robust computationally efficient statistical inference in two demographic inference tools: ∂a∂i and TRACTS. On both simulated and real data, the adjustments perform comparably to MLE bootstrapping while using orders of magnitude less computational time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Likelihood Methods

Composite likelihood methods are extensions of the Fisherian likelihood theory, one of the most influential approaches in statistics. Such extensions are generally motivated by the issue of computational feasibility arising in the application of the likelihood method in high-dimensional data analysis. Complex dependence presents substantial challenges in statistical modelling and methods and in...

متن کامل

A Composite Likelihood Approach to Computer Model Calibration with High-dimensional Spatial Data

In this paper, we introduce a composite likelihood-based approach to perform computer model calibration with high-dimensional spatial data. While composite likelihood has been studied extensively in the context of spatial statistics, computer model calibration using composite likelihood poses several new challenges. We propose a computationally efficient approach for Bayesian computer model cal...

متن کامل

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is a very challenging problem in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full ...

متن کامل

Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes

Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although some frequentist properties of the maximum composite likelihood estimator are akin to those of the maximum likelihood estimator, Bayesian inference based on composite likelihoods is in its early stages. This paper discusses inference when one use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2016